

Unit Outcomes:

After completing this unit, you should be able to:

- \gg understand the concept of definite integral.
- integrate polynomial functions, simple trigonometric functions, exponential and logarithmic functions.

しょう

- *b* use the various techniques of integration to evaluate a given integral.
- *b* use the fundamental theorem of calculus for computing definite integrals.
- apply the knowledge of integral calculus to solve real life mathematical problems.

Main Contents

- **5.1 INTEGRATION AS REVERSE PROCESS OF DIFFERENTIATION**
- **5.2 TECHNIQUES OF INTEGRATION**
- **5.3** DEFINITE INTEGRALS, AREA AND FUNDAMENTAL THEOREM OF CALCULUS
- **5.4 APPLICATIONS OF INTEGRAL CALCULUS**

Key terms

Summary

Review Exercises

INTRODUCTION

YOU HAVE JUST SEENential calculus, WHICH IS ONE OF THE TWO BRANCHES OF CALCULUS. IN THIS UNIT YOU SHALL SEE THE OTHER BRANCH OF CALCULUS CALLED INTEGRATION IS THE REVERSE PROCESS OF DIFFERENTIATION. IT IS THE PROCESS OF FIT FUNCTION ITSELF WHEN ITS DERIVATIVE IS KNOWN.

FOR EXAMPLE, IF THE SLOPE OF A TANGENT AT AN ARBITRARY POINT OF A CURVE IS KNOWN POSSIBLE TO DETERMINE THE EQUATION OF THE CURVE USING THE METHOD OF INTEGRAL CAI IT IS POSSIBLE TO FIND DISTANCE OF A MOVING OBJECT IN TERMS OF TIME, IF ITS VELO ACCELERATION IS KNOWN.

DIFFERENTIAL CALCULUS DEALS WITH RATE OF CHANGE OF FUNCTIONS, WHEREAS INTEG DEALS WITH TOTAL SIZE OR VALUE SUCH AS AREAS ENCLOSED BY CURVES, VOLUMES OF F LENGTHS OF A CURVES, TOTAL MASS, TOTAL FORCE, ETC.

DIFFERENTIAL CALCULUS AND INTEGRAL CALCULUS ARE CONNECTED BY A THEOREM fundamental theorem of calculus.

IN INTEGRAL CALCULUS THERE ARE TWO KINDS OF INTEGRATIONS WHICH ARE CALLED TH integral OR THE ANTI DERIVATIVE AND THE gral.

THE INDEFINITE INTEGRAL OR THE ANTI DERIVATIVE INVOLVES FINDING THE FUNCTION DERIVATIVE IS KNOWN.

THE DEFINITE INTEGRAL, DENG TEND TO BE THE SIGNED AREA

OF THE REGION IN -PHENE BOUNDED BY THE -CURVEHE-AXIS AND THE VERTICAL LINES = a AND = b.

ONE OF THE MAIN GOALS OF THIS UNIT IS TO EXAMINE THE THEORY OF INTEGRAL CALC INTRODUCE YOU TO ITS NUMEROUS APPLICATIONS IN SCIENCE AND ENGINEERING.

5.1 INTEGRATION AS REVERSE PROCESS OF DIFFERENTIATION

5.1.1 The Concept of Indefinite Integral

ACTIVITY 5.1

FIND AT LEAST THREE DIFFERENT FUNCTIONSWATURE THAT DESCRIBE SIMILARITIES (AND DIFFERENCES) BETWEEN YOU FOUND.

2 208 WRITE THE SET OF ALL FUNCTIONS WITH DERIVATIVE 2

<mark>≪Note:</mark>							
$\int f'(x)dx = f(x) + c \qquad \qquad$							
$\blacksquare \frac{d}{dx} \int f(x)dx = f(x)$							
Example 2 $\int \frac{d}{dx} (4x+5) dx = \int 4dx = 4x+c$ BECAUSE $\frac{d}{dx} (4x+c) = 4$							
Example 3 YOU KNOW $T \underset{dx}{\text{HA}} (x^6) = 6x^5 \Rightarrow \frac{1}{6} \frac{d}{dx} (x^6) = x^5$							
$\Rightarrow \int x^5 dx = \int \frac{1}{6} \frac{d}{dx} \left(x^6 \right) dx$							
$= \int \frac{d}{dx} \left(\frac{x^6}{6}\right) dx = \frac{x^6}{6} + c$							
AGAIN $\frac{d}{dx}\int x^5 dx = \frac{d}{dx}\left(\frac{x^6}{6} + c\right) = x^5$							
Integration of some simple functions							
ACTIVITY 5.2							
1 COPY AND FILL IN THE FOLLOWING TABLE							
$f(x)$ 4 x x^2 x^3 x^{10} x^n SIN x COS TAN COT e^x 4 x LN x LOG							
f'(x)							
2 BY OBSERVING THE TAPPRELEIN 1 ABOVE, EVALUATE EACH OF THE FOLLOWING							

INTEGRALS.

Α	$\int x^4 dx$	В	$\int SINx dx$	С	$\int \cos dx$
D	$\int \mathbf{SE} \mathbf{\hat{C}} x dx$	E	$\int \mathbf{CSC} x dx$	F	$\int e^x dx$
G	$\int 4^x dx$	н	$\int \frac{1}{x} dx$	1	$\int \frac{1}{x \text{LN} 10} dx$

IN THIS SECTION, YOU WILL SEE HOW TO FIND THE INTEGRALS OF CONSTANT, POWER, EXI AND LOGARITHMIC FUNCTIONS AND SIMPLE TRIGONOMETRIC FUNCTIONS.

Integrat	ing x ⁿ , integr	ation of a	power fu	nction			
Diffe	erentiating x^{n+1}	gives $(n+1)$	x^n .				
So ∫($(n+1) x^n dx = x^k$	$^{n+1} + c$					
Thus	$s\int x^n dx = \frac{x^{n+1}}{n+1} + \frac{x^n}{n+1} $	$c; n \neq -1.$					\bigwedge
Example	4 INTEGRAT	TE EACH O	F THE FOLI	.OWING	FUNCTIONS	WITH RESP	PECT
Α	4	B x^7		C x	-5 (0)	0	\mathcal{M}
D	$r^{\frac{1}{2}}$	E	3	e 15	$\frac{4}{3}$	nC	/
Solution	λ		~			$\langle 0 \rangle$	
Α	$\int 4 dx = 4x + c$			N	\vee	an	
В	$\int x^7 dx = \frac{x^{7+1}}{7+1} + \frac{x^{7+1}}{7+1} +$	$c = \frac{x^8}{8} + c$	~	C/S		S	
С	$\int x^{-5} dx = \frac{x^{-5+1}}{-5+1}$	$\frac{1}{1} + c = \frac{x^{-4}}{-4} + \frac{x^{-4}}{-4} $	$c = -\frac{1}{4x^4} + c$	\sim	$\langle 0 \rangle$		
D	$\int x^{\frac{1}{2}} dx = \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}$	$+c = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + c$	$r = \frac{2}{3}\sqrt{x^3} + c$		S.V		
E	$\int \frac{1}{x^{-\frac{3}{5}}} dx = \frac{x^{-\frac{3}{5}}}{\frac{-3}{5}}.$	$\frac{x^{+1}}{x^{+1}} + c = \frac{x^{\frac{2}{5}}}{\frac{2}{5}}$	$+c = \frac{5x^{\frac{2}{5}}}{2} + c$	Ì			
F	$\int x^{-\frac{4}{3}} \sqrt{x} dx = \int$	$x^{\frac{-4}{3}+\frac{1}{2}}dx = -\frac{3}{2}$	$\frac{x^{\overline{6}}}{1} = 6\sqrt[6]{x}.$				
	A .		6 (0)				
LET BE A	A CONSTAN⁄T #	ANDTHENK	$x^n dx = \frac{k}{n+1}$	$x^{n+1}+c.$			
Integrating $(ax + b)^n$ with respect to x Example 5. LET = $(2x + 5)^{10}$ THEN USING THE SUBSTITUTION							
u = 3	$u = 3r + 5$ WF HAWF u^{10}						
$\langle L \rangle$	dy dy du		0 10 (0	- 9			
CO NHE	$2N\frac{dx}{dx} = \frac{dy}{du}\cdot\frac{dx}{dx}$	$= 10u^{2} \times 3$	$= 3 \times 10 (3x -$	- 5)^			
(Ca)	$\int 3 \times 10 (3x +$	$5)^9 dx = (3x)^9 dx$	$+5)^{10} + c$				
	. @					244	
<	10						
$\langle \cdot \rangle$	\rightarrow						
1	\rangle						

IN GENERAL, BY APPLYING THE SAME **FRAMENEQUEOUS** HAVE

$$\frac{d}{dx}(ax+b)^{s+1} = a(n+1)(ax+b)^{s} \text{ SO TH} i$$

$$\int a(n+1)(ax+b)^{s} dx = (ax+b)^{s+1} + c.$$
THUS $\int (ax+b)^{s} dx = \frac{1}{a(n+1)}(ax+b)^{s+1} + c.$ WHERE $\neq -1$ AND $\neq 0.$

EVOLE

$$\int k(ax+b)^{s} dx = \frac{k}{a(n+1)}(ax+b)^{s+1} + c. n \neq -1$$
 AND $\neq -($
Example 6 INTEGRATE EACH OF THE FOLLOWING FUNCTIONS WITH RESPECT TO
A $5x^{s}$ B $\frac{1}{2x^{s}}$ C $(2x-11)^{11}$ D $(4x+3)^{8}$
E $5(2-3x)^{\frac{1}{2}}$ F $4x(1-x^{5})$ G $(3x+5)^{3}\sqrt{3x+5}$
Solution
A USING $kx^{s} dx = \frac{k}{n+1}x^{s+1} + c.$ YOU GELF $x^{s} dx = \frac{5}{7}x^{s} + c.$
B $\int \frac{1}{2x^{4}} dx = \int \frac{1}{2}(x^{-4})(2x-1)^{11+4} = (\frac{2x-1}{24})^{42} + c.$
C $\int (2x-1)^{11} dx = \frac{1}{2(11+1)}(2x-1)^{11+4} = (\frac{2x-1}{24})^{42} + c.$
D $\int (4x+3)^{s} dx = \frac{1}{4\times9}(4x+3)^{s} + c = (\frac{4x+3}{3})^{4} + c.$
E $\int 5(2-3x)^{\frac{1}{2}} dx.$ HERE $\frac{s}{4} = -\frac{s}{4} = \frac{1}{2}$
HENCE $\int 5(2-3x)^{\frac{1}{2}} dx = \frac{(-3)(\frac{1}{2}+1)}{(-3)(\frac{1}{2}+1)}(2-3x)^{\frac{1}{2}+1} + c.$
F $\int 4x[(1-x)^{3} dx = \frac{4}{-1(\frac{5}{3}+1)}(1-x)^{\frac{5}{3}+1} + c = -\frac{3}{2}(1-x)^{2}\sqrt[3]{(1-x)^{2}} + c.$
G $\int (3x+5)^{3}\sqrt{3x+5} dx = \int (3x+5)^{\frac{2}{2}} dx = \frac{(3x+5)^{\frac{9}{2}}}{3x\frac{9}{2}} + c = \frac{2(3x+5)^{4}\sqrt{3x+5}}{27} + c.$

D
$$\int e^{-x} dx = \int e^{(-1)x} dx = \frac{e^{-x}}{-1} + c = -e^{x} + c$$

E $\int 5e^{1-2x} dx = \int 5e \times e^{-2x} dx = 5e\left(\frac{e^{-2x}}{-2}\right) + c = \frac{-5e^{1-2x}}{2} + c$
F $\int 3^{4+2x} dx = \int 3^{4} \times 3^{2x} dx = \int 81 \times 9^{x} dx = \frac{81 \times 9^{x}}{LN 9} + c$
G $\int 3e^{4+3x} dx = \int 3e^{4} \times e^{3x} dx = 3e^{4} \times \frac{e^{3x}}{3} + c = e^{4+3x} + c$
H $\int \sqrt{e^{x}} dx = \int e^{\frac{1}{2}x} dx = \frac{e^{\frac{1}{2}x}}{\frac{1}{2}} + c = 2e^{\frac{1}{2}x} + c = 2\sqrt{e^{x}} + c$
Exercise 5.2

FIND THE INTEGRAL OF EACH OF THE FOLLOWING EXPRESSIONS WITH RESPECT TO

Integration of $\frac{1}{x}$

IN $\int x^n dx$, YOU PUT A RESTRICTIONTHUS, INTEGRATING = $\int x^{-1} dx$ CANNOT BE DONE USING THE RULE/OF $\frac{x^{n+1}}{n+1} + c$. YOU RECALL THATOFOR LN = $\frac{1}{x}$ $\Rightarrow \int \frac{1}{x} dx = LN + c$

WHAT HAPPENS 4 BO? LET x < 0, THEN x > 0 SO THAT 4 AN (S DEFINED.

MOREOVER
$$dx$$
, $LN (x) = \frac{1}{-x} \frac{d}{dx} (-x) = \frac{-1}{-x} = \frac{1}{x}$ BY THE CHAIN RULE.
 \Rightarrow FOR $< 0 \int \frac{1}{x} dx = 1(-x) + c$
THUS, $\int \frac{1}{x} dx = \begin{cases} LNt + c , IR > 0 \\ LN(x) + c , IR < 0 \end{cases} \Rightarrow \int \frac{1}{x} dx = LN \ddagger + c$
214

UNITS INFODUCTON TO INTEGRAL CALCULUS

Example 8 EVALUATE
A
$$\int_{x}^{3} dx$$
 B $\int_{2x}^{1} dx$
Solution
A USING $\frac{k}{x} dx = kL|k|t| + c$ YOU OBT $\int_{x}^{3} dx = 3L|k|x| + c$
B $\int_{2x}^{1} dx$, HERE $= \frac{1}{2}$
HINCE $\int_{2x}^{1} dx = \frac{1}{2} |Ih|x| + c = LN(|x| + c)$
NOW CONSIDER THE DERIVARMENDATIVE RESPECTIVE RESP.
NOW CONSIDER THE DERIVARMENDATIVE RESPECTIVE RESP.
 $\frac{d}{dx}L[k|ax+b] = \frac{1}{ax+b} \times \frac{d}{dx}(ax+b)$ (by the chain rule)
 $= \frac{a}{ax+b} \Rightarrow \frac{1}{a} \frac{d}{dx}L[k|ax+b] = \frac{1}{ax+b}$
 $\Rightarrow \int \frac{1}{a} \frac{d}{dx}L[k|ax+b] = \frac{1}{ax+b} dx$
 $\Rightarrow \int \frac{d}{dx}\frac{1}{a} lN(ax+b) = \int_{ax+b}^{1} dx$
 $\Rightarrow \int \frac{d}{dx}\frac{1}{a} lN(ax+b) + c$
Example 9 EVALUATE EACH OF THE FOLLOWING INTEGRALS.
A $\int \frac{1}{4x+1} dx$ B $(\int_{2}^{5} \frac{1}{2+3x} dx)$
Solution
A USING $\frac{1}{ax+b} dx = \frac{L[k|ax+b]}{a} + c$, Y@ HAVE
 $\int \frac{1}{4x+1} dx = \frac{5L[k|ax+b]}{a} + c = -\frac{5}{3}L[k|2|3] + c$
NOTE TH $\int_{x}^{1} dx = IN|x| + c = IN|x| + |IN| = |IN|e^{x} = [IN|A|A = e^{x}$

Properties of the Indefinite Integral

1
$$\int f'(x)dx = f(x) + c \quad \text{OR}\int \frac{d}{dx}f(x)dx = f(x) + c.$$

$$2 \qquad \frac{d}{dx} \int f(x) \, dx = f(x).$$

$$3 \qquad \int kf(x)\,dx = k\int f(x)\,dx.$$

4
$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

5
$$\int \left(f(x) - g(x) \right) dx = \int f(x) dx - \int g(x) dx.$$

Theorem 5.1

IF TWO FUNCTIONS NDG(x) ARE ANTI DERIVATIVES OF THE FUNCTION THE VAL

Proof:
$$(F(x) - G(x))' = F'(x) - G'(x) = f(x) - f(x) = 0$$

 $\Rightarrow F(x) - G(x) = c \Rightarrow F(x) = G(x) + c$

WE WILL EXPLAIN BRIEFLY WHAT WE MEAN BY ARBITRARY CONSTANT

 $\int f(x) dx = G(x) + c$

IF YOU DRAW ONE OF THE INTEGRAE GUBYESAKING 0, ALL THE OTHER INTEGRAL CURVES = F(x) + c ARE OBTAINED BY SHIFTING THE=C/URMEN OFFE-DIRECTION. THUS YOU OBTAIN A FAMILY OF (PARALLEL) CURVES.

THE FACT THAT THEY ARE PARALLEL CURVES MEANS THAT THEFY (H)A+VE). EQUAL SLOPE AT (LOOKATIGUE 5.1ANIFIGUE 5.2

Example 11 LET f(x) = 2x. THEN $\int f(x) dx = x^2 + c$

THE SLOPE
$$y$$
 $\Delta \mathbf{F}_x^2 \mathbf{A} \mathbf{F}_x = 1$ IS $\frac{dy}{dx}\Big|_{x=1} = 2(1) = 2$

SIMILARLY, THE SLOPE OF 1 AT = 1 IS 2, AND THE SLOPE \hat{OF} 1 AT = 1 IS 2. [See FIGURE 5.2]

Exercise 5.4

EVALUATE EACH OF THE FOLLOWING INTEGRALS.

 $1 \qquad \int \frac{d}{dx} (x^{3}) dx$ $3 \qquad \int \left(x^{6} + x^{\frac{1}{3}} - x^{-4} + x^{-\frac{3}{2}} \right) dx$ $5 \qquad \int \frac{x^{3} + x^{2} + x + 1}{x^{4}} dx$ $7 \qquad \int \frac{(z^{4} + z^{3} - 2z^{2} + z + 1)}{z^{2}} dz$

9
$$\int \frac{(T^2 - 3T + 4)}{T} dT$$

11
$$\int \left(e^x - e^{-x} + \frac{1}{x} \right) dx$$

13 $\int \left(2x^3 + e^{2x} - \frac{1}{2x} \right) dx$

3
$$\int \left(2x^3 + e^{2x} - \frac{1}{2x} \right) dx$$

5 $\int \left(3^{1-2x} + \frac{1}{\sqrt{2^x}} + \frac{1}{e^{2x}} \right) dx$

$$2 \quad \frac{d}{dx} \int x^{3} dx$$

$$4 \quad \int (\sqrt{x} - 3x^{3} + x^{-2} + 2) dx$$

$$6 \quad \int \frac{(x+1)^{2}}{\sqrt{x}} dx$$

$$8 \quad \int (x-1)(x^{2} + x + 1) dx$$

$$10 \quad \int \left(\frac{x+1}{x^{2}}\right) dx$$

$$12 \quad \int \frac{(e^{x} - 1)(e^{x} - 2)}{\sqrt{e^{x}}} dx$$

$$14 \quad \int (e^{x}(1 - e^{x})^{2} dx)$$

Integration of simple trigonometric functions

YOU KNOW THAT
$$f(x) dx = f(x) + c$$

FROM ACTMIN 5.2YOU OBSERVED $\frac{d}{dx}$ (SINx) = COS
 $\Rightarrow \int \frac{d}{dx} (SINx) dx = \int COS dx$
 $\Rightarrow \int COS dx = SIN + c$

THEREFORE, USING THE DERIVATIVES OF SIMPLE TRIGONOMETRIC FUNCTIONS YOU OBTAIN,

 $\int SINx \, dx = - COS + c$ $\int \mathbf{S} \mathbf{H} \mathbf{C}^2 x \, dx = \mathbf{T} \mathbf{A} \mathbf{N} + c$ $\int C S^2 x \, dx = - \operatorname{COT} c$ SIMILARL $\frac{d}{dx}$ (SEG) = SEC TAN $\frac{d}{dx}(CSG) = -CSC$ G($\int SEG \cdot TAN dx = SECc$ THUS. $\int CSCx \ COT dx = - \ CSCc$

USING THE PROPERTIES OF INDEFINITE INTEGRALS, YOU HAVE THE FOLLOWING INTE TRIGONOMETRIC FUNCTIONS.

 $k \operatorname{SIN} dx = -k \operatorname{COS} c$ $\int SIN(ax+b)dx = -\frac{1}{a}CO(ax+b) + c; \text{ WHERE} \neq 0$ **Example 12** $\int COS(5 dx = \frac{1}{5} SIN(5+)) BECASE$ $\frac{d}{ax}\left(\frac{1}{5}\operatorname{SIN}\left(\mathfrak{T} + c\right)\right) = \frac{1}{5}\frac{d}{dx}\operatorname{SIN}\left(\mathfrak{T} = \frac{1}{5}\times\operatorname{COS}\left(\mathfrak{T} + c\right)\right) = \operatorname{COS}\left(\mathfrak{T}\right).$ **Example 13** $\int SE\hat{C} (3 + 7dx) = \frac{1}{3} TAN (3 + 7)c$ BECAUSE $\frac{d}{ax}\left(\frac{1}{3}\text{TAN}(3+7)e\right) = \frac{1}{3}\frac{d}{dx}\text{TAN}(3+7) = \frac{1}{3}\text{SEC}(3+7) = \text{SEC}(3x+7).$ **Exercise 5.5**

INTEGRATE EACH OF THE FOLLOWING EXPRESSIONS WITH RESPECT TO

1	$3 \operatorname{SIN} (x)$	2	COS (2)	5	SIN(4X-1)
4	$3 \cos{(4+\frac{\pi}{3})}$	5	SIN(3) + COS(4)	6	SEC(2x+1)
7	(SC (2) COT (2)	8	$SE\left(2-\frac{1}{4} \right) T\left(Nx - 2\frac{1}{4} \right)$		
9	0				

5.2 TECHNIQUES OF INTEGRATION

IN DIFFERENTIAL CALCULUS YOU HAVE SEEN DIFFERENT RULES SUCH AS: THE ADDITION, PRODUCT, QUOTIENT AND CHAIN RULES. ALSO, IN THE REVERSE PROCESS, INTEGRATION, DIFFERENT METHODS. THE MOST COMMONLY USED METHODS ARE: SUBSTITUTION, PARTIAL AND INTEGRATION BY PARTS.

5.2.1 Integration by Substitution

Integration by substitution IS A COUNTER PARTIZONTHE of differentiation. IT IS A METHOD OF FINDING INTEGRALS BY CHANGING VARIABLES. THE INTEGRAL EXPRESSED VARIABLE MAY BE SIMPLER TO EVALUATE OR CHANGED FROM THE UNFAMILIAR INTEGRA BETTER UNDERSTOOD FORM. THIS METHOD IS BASED ON A CHANGE OF VARIABLE EQUATION CHAIN RULE. THE CHANGE OF THE VARIABLE IS HELPFUL TO MAKE UNFAMILIAR INTEGRAL INTEGRAL FORM YOU CAN RECOGNIZE.

CONSIDE
$$\Re x (x^2 + 1)^5 dx$$

LET $u = x^2 + 1$, THEN $\frac{du}{dx} = \frac{d}{dx} (x^2 + 1) = 2x \Rightarrow du = 2x dx$

$$\Rightarrow \int 2x(x^2+1)^5 dx = \int u^5 du = \frac{u^6}{6} +$$

BUT $\mu = x^2 + 1$.

THUS, $\int 2x(x^2+1)^5 dx = \frac{(x^2+1)^5}{6} + c$

IN THIS INTEGRATION, YOU CHANGE THE YORIABLE FROM YOU REMEMBER THIS INFUNCTION THEN FOR A FUNCTION

$$\frac{d}{dx}f(u) = \frac{du}{dx}f'(u) \Rightarrow \int \frac{d}{dx}f(u)du = f(u) + c$$
$$\Rightarrow \int \frac{du}{dx}f'(u)du = f(u) + c \Rightarrow \int f'(u)\frac{du}{dx}dx = \int f'(u)du$$

Example 1 FIND
$$x \sqrt{x^2 + 5} dx$$

Solution LET $u = x^2 + 5$, THEN $\frac{du}{dx} = \frac{d}{dx}(x^2 + 5) = 2x \Rightarrow \frac{1}{2} du = x dx$
HENCE $\int x\sqrt{x^2 + 5} dx = \int \sqrt{x^2 + 5}x dx = \frac{1}{2}\int \sqrt{u} du = \frac{1}{2} \frac{u^{\frac{3}{2}}}{\frac{3}{2}} + c = \frac{1}{3}u \sqrt{u} + c$
 $\Rightarrow \int x\sqrt{x^2 + 5} dx = \frac{1}{3}(x^2 + 5)\sqrt{x^2 + 5} + c$
220

Example 2 FOR EACH OF THE FOLLOWING EXPRESSION SASPLICATES SUBJECTIVALITION AND INTEGRATE WITH RESPECT TO **A** $x^2 (5x^3 - 2)^9$ В $\cos e^{SIN}$ **F** $\sqrt{x} \sqrt{1 + x\sqrt{x}}$ $\frac{x}{x^2+7}$ E D CO₃ SINt REWRITE THE INTEGRAISUSHING ARIABLE OF SUBSTITUTION. Solution $\int x^2 (5x^3 - 2)^9 dx.$ Α HERE, THE FACTOR OF THE MISCIRADERIVATIVESOF-2 THUS $\mu = 5x^3 - 2 \implies \frac{du}{dx} = \frac{d}{dx}(5x^3 - 2) = 15x^2$ $\Rightarrow \frac{1}{15} du = x^2 dx \Rightarrow \int x^2 (5x^3 - 2)^9 dx = \frac{1}{15} \int u^9 du = \frac{1}{15} \left(\frac{u^{10}}{10}\right) + c$ $\Rightarrow \int x^2 (5x^3 - 2)^9 dx = \frac{1}{150} (5x^3 - 2)^{10} + c$ $\int \cos e^{SNx} dx$ В YOU KNOW THAT $(ISIN_{t}) = COS$ HENCE₄ = SIN $x \Rightarrow du = COS dx$ $\Rightarrow \int \operatorname{COS} e^{\operatorname{SIN} x} dx = \int e^u du = e^u + c \Rightarrow \int \operatorname{COS} e^{\operatorname{SIN} x} dx = e^{\operatorname{SIN} x} + e^{\operatorname{SIN} x} dx$ $\int x e^{x^2} dx$ С $u = x^2 \Rightarrow \frac{du}{dx} = 2x \Rightarrow \frac{1}{2}du = x dx$ $\Rightarrow \int x e^{x^2} dx = \frac{1}{2} \int e^u du = \frac{1}{2} e^u + c \Rightarrow \int x e^{x^2} dx = \frac{1}{2} e^{x^2} + c$ ALSO, OBSERVE $\frac{d}{dx}\left(xt^2\right) = 2xe^{x^2}$ HENCE $u = e^{x^2} \Rightarrow \frac{du}{dx} = 2xe^{x^2}$ $\Rightarrow \frac{1}{2} du = x e^{x^2} dx \Rightarrow \int x e^{x^2} dx = \frac{1}{2} \int du = \frac{1}{2} u + c$ $\Rightarrow \int x e^{x^2} dx = \frac{1}{2} e^{x^2} + c$

$$\begin{array}{l} \mathsf{D} \quad \int \frac{x}{x^2 + 7} \, dx; \ u = x^2 + 7 \\ \Rightarrow \frac{du}{dx} = 2x \Rightarrow \frac{1}{2} \, du = x \, dx \Rightarrow \int \frac{x}{x^2 + 7} \, dx = \frac{1}{2} \int \frac{1}{u} \, du = \frac{1}{2} \ln |u| + c \\ \Rightarrow \int \frac{x}{x^2 + 7} \, dx = \frac{1}{2} \ln |x^2 + 7| + c = \ln \sqrt{x^2 + 7} + c \\ \mathsf{E} \quad \int \operatorname{COS} x \, \operatorname{SIN4x} \\ u = \operatorname{COS} \Rightarrow \frac{du}{dx} = - \, \operatorname{SIN} \Rightarrow -du = \, \operatorname{SINx} \\ \Rightarrow \int \operatorname{COS} x \, \operatorname{SIN4x} = -\int u^3 du = \frac{-u^4}{4} + c \Rightarrow \int \operatorname{COS} x \, \operatorname{SIN} dx = \frac{-\operatorname{COS}^2 x}{4} + c \\ \mathsf{F} \quad \int \sqrt{x} \sqrt{1 + x\sqrt{x}} \, dx \\ u = 1 + x \, \sqrt{x} \Rightarrow \frac{du}{dx} = \frac{d}{dx} \left(1 + x^2\right) = \frac{3}{2} x^2 \Rightarrow \frac{2}{3} \, du = \sqrt{x} \, dx \\ \int \sqrt{x} \sqrt{1 + x\sqrt{x}} \, dx = \frac{2}{3} \int \sqrt{u} \, du = \frac{2}{3} \left(\frac{2}{3}\right) u^{\frac{3}{2}} + c = \frac{4}{9} u^{\frac{3}{2}} + c = \frac{4}{9} (1 + x\sqrt{x})^{\frac{3}{2}} + c \\ \mathsf{Example 3} \quad \mathsf{FINI} \int (3x - 2)\sqrt{x + 6} \, dx. \\ \mathsf{Solution} \quad \mathsf{HERE}, s - 2 \, \mathsf{IS} \, \mathsf{NOT} \, \mathsf{A} \, \mathsf{CONSTANT} \, \mathsf{TIMES} \, \mathsf{THE} \, \mathsf{DERGVORTWEEDFERSA}. \\ \mathsf{BUT} \, \mathsf{YOU} \, \mathsf{CAN} \, \mathsf{STILL} \, \mathsf{USE} \, \mathsf{SUBSTITUTION} \, \mathsf{AS} \, \mathsf{FOLLOWS}. \\ u = x + 6 \Rightarrow x = u - 6 \Rightarrow 3x - 2 = 3 \, (u - 6) - 2 = 3u - 20; u = x + 6 \Rightarrow du = dx \\ \mathsf{THUS} \int (3x - 2)\sqrt{x + 6} \, dx = \int (3u - 20)\sqrt{u} \, du = \int 3u\sqrt{u} - 20\sqrt{u} \, du \\ = 3\int u^{\frac{3}{2}} \, du - 20\int u^{\frac{3}{2}} \, du = 3\frac{u^{\frac{5}{2}}}{\frac{5}{2}} + c_1 - 20\frac{u^{\frac{3}{2}}}{\frac{3}{2}} + c_2 = \frac{6}{5}u^2\sqrt{u} - \frac{40}{3}u\sqrt{u} + c \\ \Rightarrow \int (3x - 2)\sqrt{x + 6} \, dx = \frac{6}{5} \, (x + 6)^2\sqrt{x + 6} - \frac{40}{3}(x + 6)\sqrt{x + 6} + c. \\ \end{aligned}$$

Example 4 EVALUA
$$fre_{2x+1}^{3} dx$$
.

Solution $u = 2x + 1 \Rightarrow \frac{1}{2}du = dx$ $\Rightarrow \int \frac{3}{2x+1} dx = \frac{3}{2} \int \frac{1}{u} du = \frac{3}{2} L \mathbb{N} u |+c \Rightarrow \int \frac{3}{2x+1} dx = \frac{3}{2} L \mathbb{N} 2 + |+c|$ 222 **Example 5** EVALUATE THE FOLLOWING INTEGRALS

A
$$\int f(x)f'(x)dx$$
 B $\int \frac{f'(x)}{f(x)}dx, f(x) \neq 0$
Solution $u = f(x) \Rightarrow \frac{du}{dx} = \frac{d}{dx}f(x) = f'(x) \Rightarrow du = f'(x)dx$
A $\int f(x)f'(x)dx = \int udu = \frac{u^2}{2} + c \Rightarrow \int f(x)f'(x)dx = \frac{(f(x))^2}{2} + c$
B $\int \frac{f'(x)}{f(x)}dx = \int \frac{1}{u}du = \ln|u| + c \Rightarrow \int \frac{f'(x)}{f(x)}dx = \ln|y|f(x)| + c$
Example 6 USING $\int \frac{f'(x)}{f(x)}dx$, SHOW TH **JATAN** $dx = -\ln N$ GOS
Solution $\int TAN dx = \int \frac{SNx}{COS}dx = -\int \frac{(COS)}{COS}dx = -\ln N$ COS
Example 7 USING A SUITABLE IDENT **JSNS PROD**
Solution BY WRITING COS-(COSx - SINx = 1 - 2 SINx; YOU HAVE,
 $SNx = \frac{1-COS(2)}{2}$
 $\Rightarrow \int SIN x dx = \int \frac{1-COS(2)}{2}dx = \int \frac{1}{2}dx - \frac{1}{2}\int COS(2 dx)$
BUT $\int COS(2) dx = \frac{1}{2}$, $S(Nx) + c$ Explaint
 $\Rightarrow \int SIN x dx = \frac{1}{2}x - \frac{1}{4}SIN(2) + c$
Example 8 FIND $\int 2^{4x-1} dx$ USING THE METHOD OF SUBSTITUTION.
Solution $u = 4x - 1 \Rightarrow \frac{du}{dx} = 4 \Rightarrow \frac{1}{4}du = dx$
 $\Rightarrow \int 2^{4x-1} dx = \frac{1}{4}\int 2^{2}du = \frac{1}{4}\left(\frac{2^n}{1N}\right) = \frac{2^n}{1N_1 + 6} \Rightarrow \int 2^{4x-1} dx = \frac{2^{4x-1}}{1N_1 + 6} + c.$
Can you do this without using substitution?
LOOKAT THE FOLLOWING.
 $\int 2^{4x-1} dx = \int \frac{10^5}{2} dx = \frac{1}{2}\int 16^4 dx = \frac{1}{2}\left(\frac{16^5}{1N_1 + 6}\right) + c = \frac{2^{4x-1}}{1N_1 + 6}c$

Example 9 FIND $\int x^2 CO(3x^3 + t) dx$ $u = x^{3} + 1 \Rightarrow \frac{1}{3}du = x^{2}dx \Rightarrow \int x^{2} \operatorname{CG}(x^{3} + 1)dx = \frac{1}{3}\int \operatorname{COS} du = \frac{1}{3} \quad \text{SIN-} c$ Solution $\int x^2 \operatorname{CO}(x^3 +) dx = \frac{1}{2} \operatorname{SI}(x^3 +) + c$ **Example 10** EVALUA $\int \frac{x}{\sqrt{x^2 + a^2}} dx$ LET $u = x^2 + a^2 \Rightarrow \frac{du}{dx} = \frac{d}{dx}(x^2 + a^2) = 2x \Rightarrow \frac{1}{2}du = x dx$ Solution THUS, $\int \frac{x}{\sqrt{x^2 + a^2}} dx = \frac{1}{2} \int \frac{du}{\sqrt{u}} = \sqrt{u} + c \implies \int \frac{x}{\sqrt{x^2 + a^2}} dx = \sqrt{x^2 + a^2} + c.$ **Example 11** EVALUATE dxIN THE PROPUSTION IN THE FACTOR THE DERIVATIVE OF LN Solution THEREFORE, LN: SO THAT $\frac{du}{u} = LN\psi + c = LN |LN| + c|$ Exercise 5.6 INTEGRATE EACH OF THE FOLLOWING EXPRESSIGONS WITH RESP 1 **B** $x\sqrt{x^2+4}$ **C** $x^2\sqrt{x^3+1}$ **A** $2x(x^2+1)^3$ **D** $(2x+1)\sqrt{x^2+x+9}$ **E** SIN COS **F** $(2x+3)e^{(x^2+3x+4)}$ **H** $(x+2)\sqrt{x-3}$ **G** SIN $x e^{\cos x}$ FIND EACH OF THE FOLLOWING INTEGRALS THE BOLLOWING INTEGRALS THE DAY OF THE FOLLOWING INTEGRALS THE DAY OF THE PART O 2 **A** $\int \sqrt{3x-2} \, dx; \, u = 3x-2$ **B** $\int x\sqrt{1-5x^2} \, dx; \, u = 1-5x^2$ **C** $\int SIN(2x) dx ; u = 2x$ **D** $\int (1-4x) dx; u = 1+x$ E $\int x(x^2-3)^5 dx; u = x^2-3$ F $\int x^2(2+3x^3) dx; u = 3x^3+2$ G $\int e^x \sqrt{1+e^x} dx; u = 1+e^x$ H $\int SINx C \otimes dx u; = C \otimes dx$ $\int \sqrt{4x-3} \, dx; \, u = x-3$ J $\int \frac{1}{(1-x)^{\frac{1}{3}}} \, dx; \, u = 1-x$

UNITS INFODUCTION TO INTEGRAL CALCULUS

$$K \int 3^{\frac{1}{x}} x^{-2} dx, u = \frac{1}{x}$$

$$L \int 3^{0.6x+} dx, u = 0.6x + \pi$$

$$M \int CO(5 3x) dx u = 3x$$

$$N \int xSIN(x^{2} + \frac{1}{2}) dx u = x^{2} + \frac{1}{2}$$

$$O \int \frac{4x-5}{2x^{2}-5x+4} dx, \qquad P \int \frac{x+1}{\sqrt{x+3}} dx, u = x+3 \text{ OR } u = x+1$$

$$u = 2x^{2} - 5x + 4$$

$$Q \int (3+2x)^{12} dx, u = 3+2x$$

$$R \int TAN SECdx u = TAN$$

$$S \int SIN(2+) dx u = 2+$$

$$T \int 5^{x^{2}x} \sqrt{x} dx, u = x\sqrt{x}$$

$$U \int \frac{x}{\sqrt{x^{2}+5}} dx, u = x^{2} + 5$$

$$V \int (2x-3) \sqrt{x+3} dx, u = x+3$$

$$S EVALUATE EACH OF THE FOLLOWING INTEGRALS.$$

$$A \int x^{3}(x^{4}+5) dx$$

$$B \int (1-\frac{1}{x^{2}})(x + \frac{1}{x}) dx$$

$$C \int (2^{x^{4}})x dx$$

$$D \int COT dx$$

$$E \int SIN(\sqrt{x} + COSdx$$

$$F \int e^{x} \sqrt{4+e^{x}} dx$$

$$G \int (ax+b)^{6} dx$$

$$H \int CO(5 4x + \beta dx)$$

$$I \int 3^{x} (1-3^{(x+1)})^{3} dx$$

$$J \int \frac{4}{4x-2} dx$$

$$K \int \frac{1}{ax+b} dx$$

$$L \int \frac{1}{(ax+b)^{n}} dx$$

$$M \int \frac{x}{\sqrt{x^{2}+1}} dx$$

$$N \int x^{2} (x^{3}-8) dx$$

$$O \int \frac{e^{x^{7}}}{\sqrt{t}} dt$$

$$P \int \frac{2^{x^{7}}}{\sqrt{y}} dy$$

$$Q \int x\sqrt{3+5x} dx$$

$$R \int \frac{SIN}{\sqrt{3+CO8}} dt$$

$$T \int xe^{x^{2}+2} dx$$

$$V \int (3x+1)(3x^{3}+2x+5)^{6} dx$$

$$V \int (x-1)\sqrt{(x^{2}-2x+3)^{2}} dx$$

$$V \int (3x+1)(3x^{3}+2x+5)^{6} dx$$

5.2.2 Integration by partial fractions

DECOMPOSITION OF A RATIONAL EXPRESSION INTO PARTIAL FRACTIONS WAS DISCUSSED IN IN THIS SECTION, TO FIND THE INTEGRALS OF SOME RATIONAL EXPRESSIONS, YOU USE FRACTIONS ALONG WITH THE METHOD OF SUBSTITUTION.

ACTIVITY 5.4 DECOMPOSE EACH OF THE FOLLOWING RATIONAL EXPP PARTIAL FRACTIONS $\mathbf{A} \quad \frac{1}{x(x+1)}$ **B** $\frac{x}{x^3 - 3x + 2}$ **C** $\frac{2x - 3}{(x - 1)^2}$ **D** $\frac{x^3}{x^2-4x+3}$ **E** $\frac{x+2}{x^2(x-3)}$ **F** $\frac{x^2+2x+3}{(x+1)(x^2-4)}$ **G** $\frac{x-1}{(x+1)^2(x+2)}$ CONSIDER THE INTEGRAL OF THE RATIO NAL EXPRESSION AS x + 12 $1 + \frac{2}{r+1}$ BY USING LONG DIVISION. $\Rightarrow \int \frac{x+3}{x+1} dx = \int \left(1 + \frac{2}{x+1}\right) dx = x + 2 \int \frac{1}{x+1} dx = x + 2 \ln |x+|| + c$ USING THIS TECHNIQUE OF INTEGRATION, FIND EACH OF THE FOLLOWING INTEGRALS. **A** $\int \frac{x+2}{x+3} dx$ **B** $\int \frac{x+2}{4x-3} dx$ **C** $\int \frac{x}{4x+5} dx$ **D** $\int \frac{4x-5}{5x-4} dx$ **E** $\int \frac{1}{(2x-1)^4} dx$ **F** $\int \left(\frac{x+1}{x-3}\right)^3 dx$ **3** YOU KNOW $T \oint \left(A \frac{1}{x+2} + \frac{3}{x-1} \right) dx = \int \frac{1}{x+2} dx + \int \frac{3}{x-1} dx = L Nx + \frac{1}{2} + 3 L N - \frac{1}{x+2} dx$ CAN YOU EVALUATE THIS INTEGRAL BY SUMMING UP THE EXPRESSIONS? I.E., $\int \left(\frac{1}{x+2} + \frac{3}{x-1}\right) dx = \int \frac{x-1+3(x+2)}{(x+2)(x-1)} dx = \int \frac{4x+5}{(x+2)(x-1)} dx$ FROMACTMTY 5.4 YOU HAVE SEEN THAT DECOMPOSITION INTO PARTIAL FRACTIONS TOGETHE SUBSTITUTION ENABLES YOU TO EVALUATE THE INTEGRALS OF SOME RATIONAL EXPRESSIO 226

Example 12 FIND $\int \frac{x+5}{x^2+4x+3} dx$

Solution USING PARTIAL FRACTIONS, YOU OBTAIN,

$$\frac{x+5}{x^2+4x+3} = \frac{A}{x+1} + \frac{B}{x+3} \implies \int \frac{x+5}{x^2+4x+3} dx = \int \left(\frac{A}{x+1} + \frac{B}{x+3}\right) dx$$
$$= A \ln|x+1| + B \ln|x+| + \beta + c = 2 \ln|x+1| - \ln|x+| + \beta + c$$

Example 13 FIND $\int \frac{x^3 + 2x^2 - x - 7}{x^2 + x - 2} dx.$

Solution THE RATIONAL EXPRESSION IS AN IMPROPER BRACKFORA CHEOKIZING THE DENOMINATOR WE USE LONG DIVISION, TO OBTAIN

$$\int \frac{x^3 + 2x^2 - x - 7}{x^2 + x - 2} dx = \int \left(x + 1 - \frac{5}{x^2 + x - 2} \right) dx$$

$$= \frac{x^2}{2} + x - 5 \int \left(\frac{A}{x + 2} + \frac{B}{x - 1} \right) dx = \frac{x^2}{2} + x - 5 \left(A \, \text{LN}x + |2 + B \, \text{LN} - | \right) + c$$

$$= \frac{x^2}{2} + x + \frac{5}{3} \text{LN} |x + 2| - \frac{5}{3} \, \text{LN}x - |1 + c = \frac{x^2}{2} + x + \frac{5}{3} \, [\text{LN}x + 2 + \, \text{LN} + \,]1 + c$$

$$= \frac{x^2}{2} + x + \frac{5}{3} \, \text{LN} \left| \frac{x + 2}{x - 1} \right| + c$$

Example 14 EVALUA $\int \frac{dx}{x^2 - 9}$

Solution USING PARTIAL FRACTIONS YOU HAVE

$$\int \frac{dx}{x^2 - 9} = \int \frac{A}{x - 3} \, dx + \int \frac{B}{x + 3} \, dx = A \, \text{LNx} - \beta + B \quad \text{LN+} \quad | -\beta c$$

FROM PARTIAL FRACTIONS WE CALCULATE $\frac{1}{6}$ THE DEPARTMENT ALL FRACTIONS WE ALL FRACTIONS

$$\Rightarrow \int \frac{dx}{x^2 - 9} = \frac{1}{6} L Nx - \left| 3 - \frac{1}{6} \right| L N + \left| + 3c \right| = \left| 4 \left| \frac{x - 3}{N + 3} \right| + c$$

Exercise 5.7

USE THE METHOD OF SUBSTITUTION ALONG WITH PARTIAL FRACTIONS TO EVALUATE FOLLOWING INTEGRALS.

$$4 \int \frac{x^{2}+4}{x^{2}-1} dx \qquad 5 \int \frac{3x+5}{x+2} dx \qquad 6 \int \frac{x}{x^{2}-2x-8} dx$$

$$7 \int \frac{x}{(x^{2}-3x-8)^{2}} dx \qquad 8 \int \frac{x^{3}}{(x+1)^{2}(x+2)} dx \qquad 9 \int \frac{1}{(x+2)^{2}} dx$$

$$10 \int \frac{x^{2}+2x-3}{x^{2}(x^{2}-5x+6)} dx$$

5.2.3 Integration by parts

THE PRODUCT RULE FOR DIFFERENTIATION IS

$$\frac{d}{dx}(f(x).g(x)) = g(x)\frac{d}{dx}f(x) + f(x)\frac{d}{dx}g(x)$$

THIS FORM CANNOT BE EXPRESSED AS

HENCE, IT CANNOT BE INTEGRATED BY THE METHOD OF SUBSTITUTION.

INTEGRATION BY PARTS IS A METHOD WHICH IS A COUNTER PART OF THE PRODUCT RULE OF DIFFERENTIATION.

INTEGRATING BOTH SIDES OF THE ABOVE EXPRESSIONS GIVES,

$$\int \frac{d}{dx} (f(x).g(x)) dx = \int g(x) \frac{d}{dx} f(x) dx + \int f(x) \frac{d}{dx} g(x) dx$$

$$\Rightarrow f(x).g(x) = \int g(x) \frac{d}{dx} f(x) dx + \int f(x) \frac{d}{dx} g(x) dx$$

$$\Rightarrow \int f(x) \frac{d}{dx} g(x) dx = f(x).g(x) - \int g(x) \frac{d}{dx} f(x) dx.$$
A CTIVITY 5.5
DIFFERENTIATE EACH OF THE FOLLOWING EXPRESSION

A x LN - x + 4

B x e^x - e^x - 7

C x COS - COS + 5

D E' (SINx + COS)

E x² LN - x²

USING THE RESUMBEDEEN 1 ABOVE, EVALUATE EACH OF THE FOLLOWING INTEGRALS.

A $\int LN dx$

B $\int xe^{x} dx$

C $\int x SINx dx$

D $\int e^{x} SINx dx$

E $\int xLN dx$

SUPPOSE YOU WANT TO $\oint x^{2} SINx dx$, which method are you GOING TO APPLY?

28

≪Note:

LET u AND BE FUNCTIONS U Fu = u(x) AND = v(x).

THEN
$$\frac{d}{dx}(uv) = v \frac{du}{dx} + u \frac{dv}{dx} \Rightarrow u \frac{dv}{dx} = \frac{d}{dx}(uv) - v \frac{du}{dx}$$

 $\Rightarrow \int u \frac{dv}{dx} dx = \int \frac{d}{dx}(uv) dx - \int v \frac{du}{dx} dx \Rightarrow \int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$
IN SHOR**F**L, $dv = uv - \int v du$

IN THIS METHOD, YOU SHOULD BE ABLE TO CHIND'SE "PARTS"

Examples 15 EVALUATE $e^x dx$

Solution HERE $E^x = u dv$.

NOW, DECIDE WHICH PART SHONDOWHICH PART SHOULD BE

SUPPOSE = $x \text{ AND} v = e^x$, THEN

$$\frac{du}{dx} = 1, \text{ AND} \int dv = \int e^x dx \Longrightarrow v = e^x$$
$$\Rightarrow \int xe^x dx = uv - \int v \frac{du}{dx} dx = xe^x - \int e^x dx = xe^x - e^x + c$$
$$\text{IF} u = e^x \text{ AND} v = x.$$

IF $u = e^x AND v = x$.

THEN
$$\frac{du}{dx} = e^x \text{AND}v = x^2 = \int xe^x dx = uv - \int v \frac{du}{dx} dx = e^x \cdot x^2 - \int x^2 e^x dx$$

THS IS MORE COMPLEX THAN THE ORIGINAL INTEGRAL. HENCE, IT IS SOMETIMES HELP CONSIDERO BE THE POLYNOMIAL FACTOR.

IN THE EXPRESSIONIS THE POLYNOMIAL FACTOR.

Example 16 EVALUA **TIEN** dx

IN LN, WHAT IS THE POLYNOMIAL FACTOR? Solution 11/2.54

LET
$$u = LNx$$
 AND $v = dx$. THEN $du = \frac{1}{x}$ AND $= x$.

THUS,
$$\int LNt \, dx = x \, INx - \int x \left(\frac{1}{x}\right) dx = x \, LNt - \int dx = x \, LNt - x + c$$

EVALUA THOG dx Example

Solution NOTE THACKER =
$$\frac{LNx}{LN 2}$$

HENCH LOG: $dx = \int \frac{INx}{LN 2} dx = -\frac{1}{LN} \int LNx dx = \frac{1}{LN 2} (x LNx - x) + c$

∞Note:

IFa > 0 AND $a \neq 1$, $\int IOG_a x \, dx = \int \frac{LNt}{LNt} \, dx = \frac{1}{LNt} \int INx \, dx$ $=\frac{1}{LN_{4}}(xLN_{4}-x)+c$ Example 18 EVALUA (IEOG (8+ b)x Solution LETu = 3x + 1, THEN $\frac{du}{dx} = 3 \Longrightarrow \frac{1}{3} du = dx$ $\Rightarrow \int \text{LOG}(3+ dx) = \int \frac{\text{LN}(3+1)}{1 \text{ N}(10)} dx = \frac{1}{31 \text{ N}(10)} \text{IN} u \, du$ $=\frac{1}{31}$ (*u* LN*u* - *u* + *c*) $=\frac{1}{31.N10}((3x+1)LN(3+1)-(3+1)+6$ $=\frac{1}{3LN10}((3x+1)LN(3+) - 3-) + c$ Example 19 EVALUATESIN dx $u = x \Longrightarrow du = dx$ Solution $\frac{dv}{dx} = \text{SINx} \Rightarrow v = -\text{COS} \Rightarrow \int x \text{SINx} \, dx = -x \text{COS} - \int -\text{COS} x$ $= -x \cos x + \sin x + c$ Example 20 EVALUATELN dx $u = INx \implies du = \frac{1}{r} ANDv = x \implies v = \frac{x^2}{2}$ Solution $\Rightarrow \int x \, \mathrm{LN} \, dx = \frac{x^2}{2} \quad \mathrm{LN} - \int \frac{x^2}{2} \, \frac{1}{x} \, dx$

 $= \frac{x^2}{2} LNt - \frac{1}{2} \int x \, dx = \frac{x^2}{2} LN - \frac{1}{2} \frac{x^2}{2} + c$ $= \frac{x^2}{2} LNt - \frac{1}{4} x^2 + c$

CAN YOU ASSUME AND
$$v = LN ?$$

IF YOU SET *M*, THEN $u = dx$ AND $v = LN dx$
 $\Rightarrow v = xLN - x$
THEN $\int xLN dx = x(x LN - x) - \int (x LN dx) dx$
 $= x^2 LN - x^2 - \int xLN dx + \int x dx$
 $\Rightarrow 2\int xLN dx = x^2 LN - x^2 + \frac{x^2}{2} + c$
 $\Rightarrow \int xLN dx = \frac{1}{2}x^2 LN - \frac{1}{4}x^2 + c$
ALTHOUGH THIS GIVES YOU THE CORRECT ANSW
ample 21 EVALUA TELN dx WHERHS A REAL NUMBER

ALTHOUGH THIS GIVES YOU THE CORRECT ANSWER, STLNS: SAFER TO SET **Example 21** EVALUATELN: dx WHERE A REAL NUMBER DIFFERENT FROM -1. Solution WHAT HAPPENS-IF 1? ARE YOU GOING TO USE BY PARTS?

IF
$$r = -1$$
, THEN, $x' LN dx = \int \frac{LN}{x} dx$
BY THE METHOD OF SUBSTITUTION YOU HAVE,
 $u = LN \Rightarrow du = \frac{1}{x} dx$,
 $\int \frac{INx}{x} dx = \int u du = \frac{u^2}{2} + c \Rightarrow \int \frac{LN}{x} dx = \frac{I^2N}{x} + c$
IF $r \neq -1$, THEN = LN $\Rightarrow du = \frac{1}{x} dx$
 $dv = x' dx \Rightarrow v = \frac{x^{r+1}}{r+1}$.
THEN $\int x^r LN dx = uv - \int v du$
 $= (LN) \frac{x^{r+1}}{r+1} - \int \frac{x^{r+1}}{r+1} (\frac{1}{x}) dx$
 $= \frac{x^{r+1}}{r+1} INx - \frac{x^{r+1}}{(r+1)^2} + c$

Example 22 EVALUA $fiftheta L \mathbf{0}_3 x dx$ $\int x^2 IOG x \, dx = \frac{1}{I N} \int x^2 LN x \, dx$ Solution $=\frac{1}{LN}\left[\frac{x^{3}}{3}LN-\frac{x^{3}}{9}\right]+c \quad Why?$ **Example 23** FIND $\int e^x SINx dx$ CHOOSE = e^x AND v = SIN x**Solution** THEN $du = e^x dx$ AND = $-\cos x$. $\Rightarrow \int e^x \operatorname{SIN} x \, dx = -e^x \operatorname{COS} - \int -\operatorname{COS} dx = -e^x \operatorname{COS} + \int \operatorname{COS} x^x \, dx$ $\int e^x \cos x \, dx$ HAS THE SAME FORMISAN dxHENCE YOU APPLY INTEGRATION BY PARTS FOR A SECOND TIME. $u = e^x \Rightarrow du = e^x dx \text{ AND} v = \text{COS} \Rightarrow v = \text{SIN} x$ $\Rightarrow \int \operatorname{COS} e^x \, dx = e^x \quad \operatorname{SIN-} \int \quad \operatorname{SIN} \, dx$ BUT $\int e^x \operatorname{SIN} x \, dx = -e^x \operatorname{COS} + \int \operatorname{COS} x \, dx = -e^x \operatorname{COS} x + e^x \operatorname{SIN} - \int \operatorname{SIN} x \, dx$ SALEN dxBY COLLECTING LIKE TERMS, YOU OBTAIN $2\int e^x \operatorname{SIN} x \, dx = -e^x \quad \operatorname{COS} + e^x \quad \operatorname{SIN} c$ $\Rightarrow \int e^x \operatorname{SINx} dx = \frac{1}{2} e^x (\operatorname{SIN-} \operatorname{CO}) S + c$

In the integral $\int f(x)g(x)dx$, IFf(x) IS A TRANSCENDENTAL FUNCTION (EXPONENTIAL, TRIGONOMETRIC OR LOGARITHMIC **G(b)NS'AIONJ_XND**MIAL FUNCTION, USE THE SUBSTITUTION (x) AND v = f(x) dx for integration by parts.

Exercise 5.8

INTEGRATE EACH OF THE FOLLOWING EXPRESSIONS USING RESPICETHOD OF INTEGRATION BY PARTS.

1	xe^{1-x}	2	x COS	3	xe^{3x+1}
4	$x^2 e^x$	5	4x SINx	6	$e^{x} \cos(2)$
7	e^{3x} SINx	8	e^{-x} SIN (2)	9	LN (4)
10	x^3 LNx	11	$e^{x}(x+2)$	12	x^2 SINx
13	x ² LN (2)	14	$x \operatorname{LN}(x); n > 0$	15	x SIN (nx); n > 0
211	(0)~				

DEFINITE INTEGRALS, AREA AND THE FUNDAMENTAL THEOREM OF CALCULUS

5.3

5.3.1 The Area of a Region under a Curve

FROM GEOMETRY, YOU KNOW HOW TO DETERMINE THE AREAS OF CERTAIN PLANE FIGURES TRIANGLES, RECTANGLES, PARALLELOGRAMS, TRAPEZUMS, DIFFERENT REGULAR POLYGO COMBINATIONS OF PARTS OF CIRCLES AND POLYGONS.

IN THIS TOPIC, YOU SHALL DETERMINE THE AREA OF A REGION UNDER THE CURVE OF A NO FUNCTION f(x) THAT IS CONTINUOUS ON A CLOSED INTERDALLE THE REGION INTO *n* STRIPES APPROXIMATED BY ANGLES OF UNIFORM WIDTH

WHERE $x = \frac{b-a}{n}$ FORMED BY VERTICAL LINES THROUGH..., $x_n = b$; WHERE $a = x_0 < x_1 < x_2 < \ldots < x_n = b$, $x_1 - x_0 = x_2 - x_1 = x_3 - x_2 = \ldots = (x_n - x_{n-1}) = \Delta x$ LOOKATIGURE 5.4

AS THE VALUE OFETS LARGER AND LARGER THE RECTANGLES GET THINNER AND THINNER. RECTANGLES RISE UP TO FILL IN THE REGION.

THUS, THE AREA OF THE REGION WILL BE THE LIMITING VALUE OF THE SUM OF THE AREA RECTANGLES. THIS IS ONE OF THE DIFFERENT TECHNIQUES OF FINDING THE AREA OF A REGIO CURVE.

235

THE LINES a AND = b IS CALCULATED AS FOLLOWS.

DIVIDE THE INTER VAINTO SUB INTERVALS

 $[x_0, x_1], [x_1, x_2], [x_2, x_3], \dots, [x_{n-1}, x_n]$ EACH OF LENGTH

LET RECTANGLES EACH OF LET RECTANGLES EA

IF $\lim_{n\to\infty} \int f t_k \Delta x$ EXISTS AND IS EQUAL TO I, THEN I IS SAID TO BE THE DEFINITE 2 INTEGRALOWER THE INTER J AND IS DENOTED $B \stackrel{\circ}{Y} f(x) dx$. a AND ARI SAID TO BE THE AND pper limits OF INTEGRATION, RESPECTIVELY.

Example 1 FIND THE AREA OF THE REGION ENCLOSED BY XTHEX GRADHIE *x*-AXIS BETWEEN THE **LINES** D = 1.

SOLUTION

USING THE DEFINITION, CALCULATE THE AREA OF THE REGION AS FOLLOWS.

$$A = \int_{a}^{b} f(x) dx \Rightarrow \int_{a}^{b} x^{2} dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(z_{k}) \Delta x$$
WHEREA $x = \frac{1-0}{n} = \frac{1}{n}$ AND $x = \frac{k-1}{n} \Rightarrow f(z_{k}) = \left(\frac{k-1}{n}\right)^{2}$

$$\Rightarrow \sum_{k=1}^{n} f(z_{k}) \Delta x = \sum_{k=1}^{n} \left(\frac{k-1}{n}\right)^{2} \left(\frac{1}{n}\right) = \frac{1}{n^{3}} \sum_{k=1}^{n} (k-1)^{2}$$

$$= \frac{1}{n^{3}} \left[0 + 1 + 2^{2} + 3^{2} + \dots + (n-1)^{2}\right]$$

$$= \frac{1}{n^{3}} \frac{(n-1)(n)(2(n-1)+1)}{6} = \frac{1}{6n^{3}} \left[2n^{3} - 3n^{2} + n\right]$$

$$= \frac{1}{3} - \frac{1}{2n} + \frac{1}{6n^{2}}$$

$$\Rightarrow A = \int_{a}^{b} x^{2} dx = \lim_{n \to \infty} \left(\frac{1}{3} - \frac{1}{2n} + \frac{1}{6n^{2}}\right) = \frac{1}{3}$$

Theorem 5.2Estimate of the definite integralIF THE FUNC/TISONONTINUOU8, O THE LIM $(z_i)\Delta x$ EXISTS.

THAT IS, THE DEFINITE IN THE ORALEXISTS.

Example 2 SHOW THATSIN dx EXISTS.

Solution
$$f(x) = SINx$$
 IS CONTINUOUS ON

THUS, BY THE ABOVE THEOREM, THE DEFINITE INTEGRAL EXISTS.

5.3.2 Fundamental Theorem of Calculus

FUNDAMENTAL THEOREM OF CALCULUS IS THE STATEMENT WHICH ASSERTS THAT DIFFERENTIATE INTEGRATION ARE INVERSE OPERATIONS OF EACH OTHER. **FORENCENDERSCENDED** THIS, LET CONTINUOUS *d*OD].[IF YOU FIRST INTFORMATE THEN DIFFERENTIATE THE RESULT YOU CAN RETRIEVE BACK THE ORIGINAL FUNCTION THE ANTI DERIVATIVE OF THE FUNCTION TO BE INTEGRATED.

Theorem 5.3Fundamental theorem of calculusIFf IS CONTINUOUS ON THE CLOSED ANA DEVISIAN ANTI DERIVATIVE (OR IN DEFINITEINTEGRALD OF

THAT IS, f(x) = f(x) FOR ALL [a, b], THEN $\int_{a}^{b} f(x) dx = F(b) - F(a)$

Example 4 EVALUA $\int_{1}^{4} Ex dx$

Solution THIS VALUE IS CALCULATED USING THE DEFINITION OF DEFINITE INTEGRALS. HERE YOU USEFLINDAMENTAL TECHEM OF CALCULUS

THE INDEFINITE INTEGRAL,

$$F(x) = \int x \, dx = \frac{x^2}{2} + c \Longrightarrow \int_1^4 x \, dx = F(4) - F(1) = \left(\frac{4^2}{2} + c\right) - \left(\frac{1^2}{2} + c\right) = \frac{15}{2}$$

OBSERVE THAT EVALUATING THE DEFINITE INTEGRAL USING THE INTEGRAL SUM IS LENGTH COMPLICATED AS COMPARED TOURSEMMENTALE FROM OF CALCUUS

≪Note:

IN EVALUATING – F(a), THE CONSTANT OF INTEGRATION CANCELS OUT.

THEREFORE, YOU **AVEN** TEO MEAN(b) – F(a)

Properties of the definite integral

ACTIVITY 5.7

LET $f(x) = x^2$ AND $(x) = 1 - \frac{1}{x}$. EVALUATE EACH OF THE FOLLOWING DEFINITE INTEGRALS. **A** $\int_{1}^{3} (f(x) + g(x)) dx$ **B** $\int_{-2}^{3} f(x) dx$ **C** $\int_{3}^{1} f(x) dx + \int_{1}^{3} f(x) dx$ **D** $\int_{3}^{3} f(x) dx$ **E** $4\int_{-2}^{3} f(x) dx$ **F** $\int_{1}^{4} g(x) dx + \int_{4}^{10} g(x) dx - \int_{1}^{10} g(x) dx$ LETFAND BE CONTINUOUS FUNCTIONS ON THE CLOSEDNMEERVAL [2 **A** EVALUA $\int_{a}^{a} f(x) dx$ **B** EXPRES $\int_{b}^{a} f(x) dx$ IN TERMS $\int_{a}^{b} f(x) dx$ **C** IN THE INDEFINITE INTEGRAL YOU LEARNED THAT $\int \left(f(x) \pm g(x) \right) dx = \int f(x) dx \pm \int g(x) dx \text{ AND} k f(x) dx = k \int f(x) dx.$ DOES THIS PROPERTY HOLD TRUE FOR DEFINITE INTEGRALS? JUSTIFY YOUR ANSWI PRODUCING EXAMPLES. YOU ALSO LEARNE $a_i = a_i + \sum_{i=1}^n a_i$ FOR $\leq k < n$. DOES THE EQUALITY D $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \text{ FOR} \le c < b \text{ HOLD TRUE}?$ IN DIFFERENTIAL CALCULUS $Y \overset{d}{\overset{d}{\overset{d}{\overset{d}{\overset{d}}}} (f(x)) \neq \frac{d}{dx} f(x) \overset{d}{\overset{d}{\overset{d}}} g(x).$ Е GIVE AN EXAMPLE TO SHOP if $f(x) dx \neq \int_{a}^{b} f(x) dx \cdot \int_{a}^{b} g(x) dx$. SHOW THE $\int_{a}^{b} \frac{f(x)}{g(x)} dx \neq \frac{\int_{a}^{b} f(x) dx}{\int_{a}^{b} g(x) dx}$ BY PRODUCING EXAMPLES. Properties of the definite Integral IF f AND ARE CONTINUOUSD IN $\in \mathbb{R}$ AND $\in [a, b]$ THEN $2 \qquad \int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$ $\int_{a}^{a} f(x) dx = 0$ 3 $\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$ 4 $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$ 5 $\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$

Example 10 EVALUATE EACH OF THE FOLLOWING INTEGRATISTICS AB

A
$$\int_{1}^{3} (x^{3}+1) dx$$
 B $\int_{\frac{1}{4}} \text{SN} x dx$ C $\int_{1}^{2} \left(x - \frac{1}{x^{2}}\right)^{2} dx$
D $\int_{1}^{\sqrt{5}} \frac{x}{x^{2}+1} dx + \int_{\sqrt{5}}^{5} \frac{x}{x^{2}+1} dx$ E $\int_{-1}^{1} e^{-xx} dx$
Solution
A BYPRPERY 1 $\int_{3}^{3} (x^{3}+1) dx = 0$
B BYPRPERY 2
 $\int_{\frac{1}{4}} \text{SIN} dx = -\int^{T} \text{SIN} dx = Co \overline{8} = COS (e^{-\frac{1}{2}} - (-1)) = \frac{\sqrt{2}}{2} + 1$
C BYPRPERY 3 AND REPERY 5
 $\int_{1}^{2} \left(x - \frac{1}{x^{2}}\right)^{2} dx = \int_{1}^{2} \left(x^{2} - \frac{2}{x} + \frac{1}{x^{3}}\right) dx$
 $= \int_{1}^{2} x^{3} dx - 2\int_{1}^{2} \frac{1}{x} dx + \int_{1}^{2} \frac{1}{x^{4}} dx = \frac{x^{3}}{3}\Big|_{1}^{2} - 2LN\overline{x}\Big|_{1}^{2} - \frac{1}{3x^{3}}\Big|_{1}^{2}$
 $= \left(\frac{8}{3} - \frac{1}{3}\right) - 2[LN 2 - LN^{4}]\left[\frac{1}{3(2^{3})} - \frac{1}{3}\right]$
 $= \frac{7}{3} - 2LN \frac{2}{7} \frac{7}{24} + \frac{21}{8} - 2LN$
D BYPRPERY 4
 $\int_{1}^{\sqrt{5}} \frac{x}{x^{2}+1} dx + \int_{\sqrt{5}}^{\frac{5}{3}} \frac{x}{x^{4}+1} dx = \int_{1}^{5} \frac{x}{x^{2}+1} dx$
 $= \frac{1}{2}LNSe^{2} + ||_{1}^{5}$
 $= \frac{1}{2}(LN 26 - LN 2)\frac{1}{2}$ LN
E $\int_{1}^{1} e^{-yx} dx = \int_{-1}^{1} e^{e^{yx}} dx e^{-\frac{e^{yx}}{3}} ||_{-1}^{-1}$
 $\int_{-1}^{1} e^{+xx} dx = \int_{-1}^{1} e^{e^{yx}} dx = e^{-x}||_{-1}^{1} = e^{\left(\frac{e^{3}}{3} - \frac{e^{-3}}{3}\right)} = \frac{e^{-3}}{3}(e^{6} - 1)$
 $= e^{\left(\frac{e^{3}}{3} - \frac{e^{3}}{3}\right] = \frac{e^{-3}}{3}(e^{6} - 1).$

Change of variable

IN EVALUATING THE INDEFINITE (\mathbf{n}) and \mathbf{n} and

$$\Rightarrow \int_{a}^{b} f(g(x)) \cdot g'(x) dx = F(g(b)) - F(g(a))$$

TO EVALUATE THE DEFINITE INTEGRAL BY THE METHOD OF SUBSTITUTION, YOU TRAN INTEGRAND AS WELL AS THE LIMITS OF INTEGRATION.

FOR THIS PROCESS YOU HAVE THE FOLLOWING THEOREM.

Example 12 EVALUATE THE IN $f \in \mathbf{GRA}^{1+5} dx$.

Solution HERE $\mu = g(x) = 2x^2 + 5, g(-3) = 2(-3)^2 + 5 = 23,$ $g(1) = 2(1)^2 + 5 = 7$ $\frac{du}{dx} = \frac{d}{dx}(2x^2 + 5) = 4x \implies \frac{1}{4}du = x dx$ $\int_{-3}^{1} x\sqrt{2x^2 + 5} dx = \frac{1}{4}\int_{23}^{7}\sqrt{u} du = \frac{1}{4}\left(\frac{u^3}{\frac{3}{2}}\right)\Big|_{23}^{7} = \frac{1}{6}\left(7\sqrt{7} - 23\sqrt{23}\right).$

Example 13 EVALUATEOS \hat{x} SINdx

Solution THE DERIVATIVE QHSCQSSN: WHICH IS A FACTOR OF THE INTEGRAND. HENCE₄ = g(x) = COS: $\Rightarrow -du$ = SIN: dx

$$\int_{0}^{\overline{3}} \text{COSx} \quad \text{SINd}x = -\int_{g(0)}^{g(\overline{3})} u^{3} \, du = -\int_{1}^{\frac{1}{2}} u^{3} \, du = -\frac{u^{4}}{4} \Big|_{1}^{\frac{1}{2}} = -\left(\frac{1}{64} - \frac{1}{4}\right) = \frac{15}{64}$$
Exercise 5.10

IN EXERCISES 1-15 EVALUATE EACH OF THE FOLLOWING DEFINING INTEGRALS US FUNDAMENTAL THEOREM OF CALCULUS. IN THEREXING CONSES,

IN EXERCISES 16 – 25 EVALUATE EACH OF THE FOLLOWING DEISIINICI CHAINEGRADES U VARIABLES.

$$\begin{array}{cccc} \mathbf{16} & \int_{-1}^{1} \frac{2x+3}{\left(x^{3}+3x+4\right)^{6}} \, dx & \mathbf{17} & \int_{-1}^{\frac{1}{2}} \left(4x+3\right)^{10} \, dx & \mathbf{18} & \int_{\sqrt{2}}^{3} x \sqrt{x^{2}+7} \, dx \\ \mathbf{244} & & \\ \end{array}$$

IN THIS SECTION, YOU SHALL SEE SOME OF THE MATHEMATICAL AND PHYSICAL APPLICATION THE AREA INTEGRAL CALCULUS. IN THE MATHEMATICAL APPLICATION YOU CALCULATE THE AREA BOUNDED BY CURVES OF CONTINUOUS FUNCTIONS DEFINED (A) A (A

IN THE PHYSICAL APPLICATIONS, YOU CALCULATE THE WORKDONE BY A VARIABLE FOR STRAIGHT LINE, ACCELERATION, VELOCITY AND DISPLACEMENT.

5.4.1 The Area Between Two Curves

YOU CALCULATED THE AREA OF SOME REGIONS UNDER THE GRAPHS OF A NON-NEGATIVE ON [a, b], WHEN THE DEFINITE IN EGRAPHICAL WAS DEFINED. HOWEVER THE FOCUS WAS TO

EVALUATE THE INTEGRAL RATHER THAN TO CALCULATE AREA. HERE, YOU USE THIS CONC ORDER TO DETERMINE THE AREA OF A REGION WHOSE UPPER AND LOWER BOUNDARIES AR CONTINUOUS FUNCTIONS ON A GIVEN CLQ**B**ED INTERVAL [

ACTIVITY 5.9

- 1 USING THE DEFINITION OF THE DEFINITE INTEGRAL, CAVER AND AREA OF THE REGION BOUNDED BY THE GRAPH OF
 - $A \qquad y = x \text{ AND THEAXIS BETWEEN AND} = 1.$
 - **B** $y = x^2 + 1$ AND THEAXIS BETWEEN AND z = 1.
- 2 USING THE RESULTSFERGM 1, AND YOUR KNOWLEDGE OF THE AREA OF A SHADED PART, FIND THE AREA OF THE REGION BOUNDED BY (FHE xGRAPHING(x) = xBETWEEN 0 AND = 1.

WE EXTEND THE PROBLEM**SCOPTYTE** AN ARBITRARY REGION ENCLOSED BY THE GRAPHS OF CONTINUOUS FUNCTIONS.

Example 1 FIND THE AREA OF THE REGION BOUNDED BY THE GRAPH OF THE FUNCTION

 $f(x) = x^2 - 3x + 2$ AND THEAXIS BETWEEN AND = 3.

Solution LOOKAT THE GRAPHEDWEEN 0 AND = 3.

LETA₁, A_2 AND₃ BE THE AREAS OF THE PARTS OF THE REGION **DE**TEMEEN x = 1 AND = 2 AND = 3, RESPECTIVELY.

THE PART OF THE REGION. BETWEEN ≥ 2 IS BELOW THEATS.

 $\Rightarrow A_{2} = -\int_{1}^{2} (x^{2} - 3x + 2) dx = -\left(\frac{x^{3}}{3} - \frac{3x^{2}}{2} + 2x\right) \Big|_{1}^{2} = 4 - \frac{23}{6} = \frac{1}{6}$ WHEREAS, $= \int_{0}^{1} (x^{2} - 3x + 2) dx = \left(\frac{x^{3}}{3} - \frac{3x^{2}}{2} + 2x\right) \Big|_{0}^{1} = \frac{5}{6}$ AND $A_{3} = \int_{2}^{3} (x^{2} - 3x + 2) dx = \left(\frac{x^{3}}{3} - \frac{3x^{2}}{2} + 2x\right) \Big|_{2}^{3} = \frac{5}{6}$ 246 THEREFORE, THE AREA A OF THE REGION IS

$$A = A_1 + A_2 + A_3 = \frac{11}{6}$$

WHAT WOULD HAVE HAPPENED, IF YOU HAD SIMPLY TRUED TO CALCULATE

$$A = \int_{0}^{3} (x^{2} - 3x + 2) dx?$$

Example 2 FIND THE AREA OF THE REGION ENCLOSED B(X) THE REGION ENCLOSED

x-AXIS BETWEEN-
$$\frac{\pi}{2}$$
 AND = 2.

Solution

Example 3 FIND THE AREA OF THE REGION BOUNDED $\mathcal{B}(\mathbf{X})$ THE AGNA HIMOF *x*-AXIS BETWEEN-1 AND = 1.

Solution

FROM THE SYMMETRY OF THE REGION, YOU HAVE THE AREA

$$A = 2 \int_{0}^{1} x^{5} dx = 2 \left(\frac{x^{6}}{6} \right) \Big|_{0}^{1} = \frac{1}{3}$$

Example 4 FIND THE AREA OF THE REGION BOUNDED \mathbb{B} (A) THE 3 GR 3 PH OF AND THE XIS BETWEEN-1 AND = 2.

Solution

Example 5 LET
$$(x) = \begin{cases} 2^x, \text{IF} x \le 1; \\ 1 + \frac{1}{x}, \text{IF} x > 1. \end{cases}$$

FIND THE AREA OF THE REGION ENCLOSED BUNCHERER AND FIND THE AREA OF THE REGION ENCLOSED BUNCHERER AND = 2.

Solution YOU FIRST SHOW THAT THE FUNCTION IS CONTINUOUS ON [LOOKAT THE GRAPONOF1, 2]. THE FUNCTION IS CONTINUOL29.ON [

THE UPPER PART OF THE REGION IS BOUNDED BY THE GRAPHS OF AND FUNCTIONS, $y=1+\frac{1}{x}$ INTERSECTING AT

LETA₁ BE THE AREA OF THE REGION BETWEEN-THENDINESANDA₂ BE THE AREA OF THE REGION BETWEEN-THENDINES

THENA₁ =
$$\int_{-1}^{1} 2^{x} dx = \frac{2^{x}}{\ln 2} \Big|_{-1}^{1} = \frac{1}{\ln 2} \Big(2^{-1} \Big)_{2}^{2} = \frac{3}{2 \ln 2} = \frac{3}$$

USING YOUR KNOWLEDGE OF SHADED AREA, DETER OF THE REGION ENCLOSED BY THE xGR a^2 PHS aND g(x) = 1 AND THE LINES AND = 3

249

REA

MATHEMATCSGRADE 12

UNITS INFODUCTION TO INTEGRAL CALCULUS

Example 11 FIND THE AREA ENCLOSED BY THE GRAPHNOFTHAXIS BETWEEN THE VERTICAL HNESAND = 3. DO YOU THINK THAT EXIST Stall **Solution**

f(x) = |x| IS CONTINUOUS- Φ , SJ. 3 2 -3 -2 Figure 5.23

YOU KNOW THAT
$$\begin{cases} x, \text{ IF } x \ge 0 \\ -x, \text{ IF } x < 0 \end{cases}$$

THUS, THE AREA $\int_{-4}^{3} |x| dx = \int_{-4}^{0} |x| dx + \int_{0}^{3} |x| dx$
$$= \int_{-4}^{0} (-x) dx + \int_{0}^{3} x dx = -\frac{x^{2}}{2} \Big|_{-4}^{0} + \frac{x^{2}}{2} \Big|_{0}^{3} = -\left(0 - \frac{(-4)^{2}}{2}\right) + \left(\frac{3^{2}}{2} - 0\right) = \frac{25}{2}$$

Example 12 DETERMINE THE AREA OF THE REGION ENCLOSED BY J²HENERAPHS OF $x = 9 - 2y^2$.

Solution

n HERE THE CURVES ARE OPENING IN THE REGION IS SYMMETRICAL WITH RESPECT TO THE

YOU SOL¥E $y^2 = 9 - 2y^2$ IN ORDER TO DETERMINE THE INTERSECTION POINTS OF THE GRAPHS THUS, $y^2 = 9 - 2y^2 \Rightarrow y^2 = 9 \Rightarrow y = \pm 3$

THE REQUIRED AREA IS FOUND BY INTEGRATING WITH RESPECT TO

$$A = 2\int_{0}^{3} \left(\left(9 - 2y^{2}\right) + y^{2} \right) dy = 2\left(9y - \frac{y^{3}}{3}\right) \Big|_{0}^{3} = 2(27 - 9) = 36$$

Example 13 FIND THE AREA OF THE REGION ENCLOSED BY JTHE CARAPTHOF LINE = 5.

Solution FROM THE GRAPH, YOU SEE THAT STHROSSES THE GURN # 1 AT

CONSIDERING CROSS SECTIONS. IN THE STUDY OF PLANTS OR ANIMALS, VERY THIN CROSS S PREPARED BY SCIENTISTS. DURING EXAMINATION IN A TRANSMISSION ELECTRON MIC (TEM), THE ELECTRON BEAM CAN PENETRATE IF THE SLICED SPECIMEN IS EXTREMELY BECAUSE ONLY THE ELECTRONS THAT PASS THROUGH THE SPECIMEN ARE RECORDED.

SUPPOSE A REGION ROTATES ABOUT A STRAIGHT GINE AS SABOMONNITHEN A SOLID FIGURE, CALLED Arevolution, WILL BE FORMED [SER 5.27]

FROM THE ABOVE ACTIVITY, YOU HAVE SEEN DIFFERENT SOLIDS FORMED BY ROTATING AN A LINE. IN GENERAL, A SOLID OF REVOLUTION IS A THREE DIMENSIONAL OBJECT FORMED BY AN AREA ABOUT A STRAIGHT LINE. THE NEXT TASKIS TO FIND THE VOLUME OF SUCH A SOLID THE VOLUME OF A SOLID OF REVOLUTION/IS/SA4D/IT@/BELAION. THE LINE ABOUT WHICH THE AREA ROTATESSISTANETY.

NOW, CONSIDER THE FOLLOWING SOLID OF REVOLUTION GENERATED BY REVOLVING THE REPORT OF REVOLUTION GENERATED BY REVOLVING THE REPORT a = b.

256

EVERY CROSS SECTION WHICH IS PERPENDICULAR REGION WITH RADIUS, f(x), THUS, THE AREA OF THE CROSS \vec{s} ection) \vec{s}

How to determine the volume of a solid of revolution

DIVIDE THE SOLID OF REVOLUTION ANTO SPACED CROSS SECTIONS WHICH ARE PERPENDICULAR TO THE AXIS OF ROBULATE SOLO ISEE

 $\begin{cases} \Delta x \\ Figure 5.30 \end{cases}$

AS THE CUTS GET CLOSE ENOUGH, THEN THEASING TONNELS OF PROXIMATELY BE A CYLINDRICAL SOLFDGAISCIN. 30

LETV_K BE THE VOLUME @[†] SECETIONS, THEN

$$V_K = r^2 h$$
, WHERE= $f(x_k)$ AND $h = \Delta x$

 $\Rightarrow V_k = (f(x_k))^2 \Delta x$

LETAV BE THE SUM OF THE VOLUMESHOPFICIPIES.

THENAV = $\sum_{k=1}^{n} \mathbf{V}_{k}$.

THE VOLUMOF THE SOLID OF REVOLUTION IS

$$V = \underset{\Delta x \to 0}{\text{LIM}} \Delta V = \underset{n \to \infty}{\text{LIM}} \sum_{k=1}^{n} V_{k} = \underset{n \to \infty}{\text{LIM}} \sum_{k=1}^{n} (f(x_{k}))^{2} \Delta x = \int_{a}^{b} (f(x))^{2} dx$$

Example 14 FIND THE VOLUME GENERATED WHEN THE AREA. **BADE** NDAENDBY TH THE AXIS FROM 0 TO: = 3 IS ROTATED ABOLEAXISE

SOLUTION

A Rotating the region about the x – axis
 B gives the solid as shown in the figure on the right. Using the definite integral the volume V is determined as follows
 Figure 5.31

The solid of revolution is a right circular cone with radius and height each 3 units long.

 $V = \int_{0}^{3} x^{2} dx = \frac{x^{3}}{3} \Big|^{3} = 9$

CHECKTHAT YOU ARRIVE AT THE SAME RESULT, AT FOR THE VOLUME OF THE CONE.

Solution

Example 16 THE AREA BOUNDED BY THE GRAPH OND THE MAN ROTATES ABOUT THEXIS, FIND THE VOLUME OF THE SOLID GENERATED.

Solution

Figure 5.33

 $y = x^2 + 1 \implies x = \pm \sqrt{y-1}$. HERE, YOU HAVE HORIZONTAL CROSS SECTIONS.

$$V = \int_{1}^{4} \left(\sqrt{y - 1}^{2} \right) dx = \int_{1}^{4} (y - 1) \, dy = \left(\frac{y^{2}}{2} - y \right) \Big|_{1}^{4} = \left(\frac{16}{2} - 4 \right) - \left(\frac{1}{2} - 1 \right) = \frac{9}{2}$$

Example 17 FIND THE VOLUME OF THE SOLID OF REVOLUTION WERENTTHEFTER SOLID OF REVOLUTION SOLID S

$$x^2 + y^2 = r^2$$
; $0 \le y \le r \implies y = \sqrt{r^2 - x^2}$

THE VOLUME

$$V = \int_{-r}^{r} \left(\sqrt{r^2 - x^2}\right)^2 dx = \int_{-r}^{r} \left(r^2 - x^2\right) dx = \left(r^2 x - \frac{x^3}{3}\right) \Big|_{-r}^{r}$$
$$= \pi \left(r^2 \left(r\right) - \frac{r^3}{3} - \left(r^2 \left(-r\right) - \frac{\left(-r\right)^3}{3}\right)\right) = \pi \left(r^3 - \frac{r^3}{3} - \left(-r^3 + \frac{r^3}{3}\right)\right) = \frac{4}{3}\pi r^3$$

Example 19 FIND THE VOLUME OF WATER IN A SPHERIC SISE OWNITSF RADIU MAXIMUM DEPTH IS 2 M.

Solution FROMFIGURE 5.36, YOU CAN DETERMINE THE RADIUS OF THE SURFACE OF THE WATER WHICH IS 4 M.

THE HEMISPHERE CAN BE GENERATED BY THE QUARTER OF THE CIRCULAR REGION.

 $x^2 + y^2 = 25$; $0 \le x \le 5$ AND $5 \le y \le 0$ REVOLVING ABOUATIONE

Example 20 FIND THE VOLUME OF THE SOLID OF REVOLUTIONS GENERATED BY REVOLVING THE REGION ENCLOSED BY THEADUR THEAXIS FROM

Figure 5.39

v = 4

THE SOLID OF REVOLUTION IS A CYLINDER THE AGE OF A CHARGE BY THE AREA BOUNDED $_3B_{2}x^2$ AND THE AXIS FROM -2 TO: = 2.

LETV₁ BE THE VOLUME OF VACANT SPACE.

The region to be rotated about the x – axis **B**

261

x

The solid of revolution

THEN₁ =
$$\int_{-2}^{2} (x^2)^2 dx = \frac{x^5}{5} \Big|_{-2}^{2} = \left(\frac{32}{5} - \left(-\frac{32}{5}\right)\right) = \frac{64}{5}$$

LETV2 BE THE VOLUME OF THE CYLINDER, THEN

$$V_2 = \int_{-2}^{2} 4^2 dx = 16 \quad x \Big|_{-2}^{2} = 16 \quad (2 - (-2)) = 64$$

THUS, THE VOLUMETHE REQUIRED SOLID IS

$$V = V_2 - V_1 = 64 - \frac{64}{5} = \frac{256}{5}$$

OBSERVE THAT

$$V = V_2 - V_1 = \int_{-2}^{2} 4^2 dx - \int_{-2}^{2} (x^2)^2 dx = \int_{-2}^{2} (4^2 - (x^2)^2) dx$$

= $\int_{-2}^{-2} (4^2 - x^4) dx = \int_{-2}^{-2} (16 - x^4) dx = \int_{-2}^{2} 16 dx - \int_{-2}^{2} x^4 dx$
= $\times 16 x \Big|_{-2}^{2} - \frac{x^5}{5}\Big|_{-2}^{2} = (32 + 32) - (\frac{32}{5} + \frac{32}{5})$
= $64 - \frac{64}{5} = \frac{256}{5}$

FROM THE ABOVE OBSERVATION, CAN YOU SEE HOW TO CALCULATE THE VOLUME OF A SOL REVOLUTION GENERATED BY AN AREA ENCLOSED BY TWO CURVES?

CONSIDER THE REGION ENCLOSED BY **FHE AND** \forall **ES**(*x*) BETWEEN *a* AND = *b*.

USING THE CONCEPT SERAN FRE 21, YOU HAVE THE VOLOR SOLID OF REVOLUTION TO BE

$$V = \int_{a}^{b} \left(\left(f(x) \right)^{2} - \left(g(x) \right)^{2} \right) dx$$

Example 22 FIND THE VOLUME OF SOLID OF REVOLUCTANTS AND LET ATHED BY REVOLVING THE AREA BETWEEN ATHED STOME 1 TO: = 3.

Solution

Example 23 IF THE REGION ENCLOSED BY THE (A) BARAPHISTOR $= x^2$ FROM

263

Solution

Example 24 Work done by a variable force

THE WORKDONE BY AFFORCEUGH A DISPLACEMENTOR ISM

 $\int_{x_1}^{x_2} |F| dx$

FIND THE WORKDONE WHEN A PARTICLE IS MOVED THROUGH A DISPLACEMENT OF 10M

ALONG A SMOOTH HORIZONTAL SURFACE BY A FORCE FORMAGNITUDE

WHEREIS THE DISPLACEMENT OF THE PARTICLE FROM ITS INITIAL POSITION, IN METRES

Solution

WORKDONE
$$\int_{0}^{10} |F| dx = \int_{0}^{10} \left(9 - \frac{1}{2}x\right) dx = 9x - \frac{x^2}{4} \Big|_{0}^{10} = 90 - \frac{100}{4} = 65.$$

Motion of a particle in a straight line

SUPPOSE A PARTICIDES A LONG A STRAIGHTMITTED AS ITS INITIAL POINT.

THE VELOGITSYTHE RATE AT WHICH THE DISPNCREMENSIWITH RESPECT TO TIME

$$\Rightarrow v = \frac{ds}{dt} \Rightarrow \int v \, dt = \int ds \qquad \Rightarrow s = \int v \, dt$$

THE ACCELERATS CINIE RATE AT WHICH THE VELOCITY INCREASES WITH RESPECT TO TIME

$$\Rightarrow a = \frac{dv}{dt} \Rightarrow \int a \, dt = \int dv \Rightarrow v = \int a \, dt$$

Example 25 SUPPOSE A PARPINDEVES ALONG A STRATON MULTINEAN ACCELERATION OF

3.5t. WHEN = 2 SECP HAS A DISPLACEMENT OF 10 M FROM O AND A VELOCITY OF 15 M/SEC. FIND THE VELOCITY THE DISPLACEMENT SYSTEM

Solution USING THE GIVEN INFORMATION YOU HAVE,

$$v = \int a \, dt = \int 3.5t \, dt = \frac{3.5}{2}t^2 + c. \text{ BUTe}(2) = 15 \Longrightarrow 15 = \frac{3.5}{2}(2)^2 + c \implies c = 8.$$

ALSO: =
$$\int v dt \Rightarrow s = \int \left(\frac{7}{4}t^2 + 8\right) dt = \frac{7}{12}t^3 + 8t + c$$

BUTs (2) = 10
$$\Rightarrow$$
 10 = $\frac{7}{12}(2)^3 + 8(2) + c$

$$\Rightarrow c = -\frac{32}{3} \Rightarrow s = \frac{7}{12}t^3 + 8t - \frac{32}{3}$$

THEREFORE, WHEN

a THE VELOCITY $\frac{7}{4}(5)^2 + 8 = 51.75$ M/SE(

b THE DISPLACEMENT,
$$(5)^3 + 8(5) - \frac{32}{3} = 102.25$$
 M

Exercise 5.12

- 1 FIND THE VOLUME OF THE SOLID OF REVOLATION CAEDID RATIE BY REVOLVING THE REGION ENCLOSED BY THE GIVEN FUNCTION DTHE VERTICAL LINES.
 - **A** y = 2x; x = 0 AND = 1 **B** $y = x^2 + 1$; x = -1 AND = 2
 - **C** $y = e^x$; x = 1 AND = 2**D** y = SINx; $x = \frac{1}{3}$ AND $= \frac{1}{2}$
 - **E** y = |x|; x = -3 AND = 1 **F** $y = 2^x$; x = -2 AND = 3

G
$$y = x^3$$
; $x = -1$ AND $= 2$

- 2 FIND THE VOLUME OF THE SOLID OF REVOLU**ATION** (A ENTRATHED BY REVOLVING THE REGION ENCLOSED BY THE GRAPHS OF THE GIVEN FUNCTIONS.
 - **A** $f(x) = 4x x^2$ ANIQ (x) = 3
 - $\mathbf{B} \qquad f(x) = x^3 \text{ ANI} g(x) = x$
 - **C** $f(x) = \text{SIN}x \text{ ANI}g(x) = \text{COS}x \text{ FROM} = 0 \text{ TO}x = -\frac{1}{2}$

D
$$f(x) = x^2$$
, $g(x) = |x|$ FROM = -2 TO = 2

3 USING THE VOLUME OF REVOLUTION, PROVE OHATFRHIS WOM ON A RIGHT

CIRCULAR CONE OF ARMONIND HEIGHS $h(R^2 + rR + r^2)$.

- 4 A PARTICLE P STARTS FROM A POINT A WWWNEVELFONTISYMOVING ALONG A STRAIGHT LINE AB WITH AN ACCELER ATTION INSECONDS, FIND
 - A THE ACCELERATION B THE VELOCITY AND
 - C THE DISPLACEMENT AFTER TEN SECONDS

4 Techniques of Integration

Integration by substitution

$$\int f(g(x)) g'(x) dx = \int f(u) du; \text{ WHERE} = g(x).$$

$$\int f'(x) f(x) dx = \frac{(f(x))^2}{2} + c \qquad \text{II} \qquad \int \frac{f'(x)}{f(x)} dx = \text{IN} |f(x)| + c$$

Integration by parts

$$\int u \frac{d}{dx} = uv - \int v \frac{du}{dx}$$

5 Fundamental Theorem of Calculus

IF f(x) = F'(x), THEN $\int_{a}^{b} f(x) dx = F(b) - F(a)$

6 Properties of definite integrals

$$\int_{a}^{b} k f(x) dx = k \int_{a}^{b} f(x) dx$$
$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

III IF
$$f(x) \ge 0$$
 ON $(a, b]$, THE $\iint_{a}^{b} f(x) dx \ge 0$

$$\mathbf{V} \qquad \int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx$$

$$\bigvee \qquad \int_{a}^{a} f(x) \, dx = 0$$

$$\bigvee \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx; a \le c < b.$$

MI IF
$$u = g(x), \int_{a}^{b} f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

7 Applications of the definite integral

THE AREABOUNDED BY TWO CONTINUOUS f(x) RAVES = g(x) ON [a, b] WIT $f(x) \ge g(x) \forall x \in [a, b]$ IS

$$A = \int_{a}^{b} (f(x) - g(x)) dx.$$

I THE VOLUMER A SOLID OF REVOLUTION GENERATED BY REVOLVING THE REGI BOUNDED $\mathcal{B} \neq f(x)$ AND = g(x) WITH $(x) \ge g(x) \forall x \in [a,b]$ ABOUT THE *x*-AXIS IS

$$V = \int_{a}^{b} \left(\left(f\left(x \right) \right)^{2} - \left(g\left(x \right) \right)^{2} \right) dx.$$

?

INEXERCISES 1 – 60 INTEGRATE THE EXPRESSION WITH RESPECT TO									
	1	$\frac{1}{x}$	2	2x + 5	3	$x^2 - 3x + 2$	4	$3x^{5}$	2
	5	$\frac{2}{x^7}$	6	$x^{\frac{3}{2}}$	7	$x^{\frac{1}{3}}$	8	$x^{\frac{1}{3}} + x\sqrt{x} - \frac{1}{2x} + x$	r O
	9	$2x^{-3}$	10	$\frac{2}{r^{5}}$	11	SIN(t+2)	12	4^{x} – SINx	1
	13	TAN (3-4)	14	$x x (x^2 + 1)$	15	$\sqrt{2x+7}$	16	$(3x+5)^{13}$	1
	17	$(x^2 - 1)^3$	18	$(x+1)(x^2+2x+5)^{10}$	19	$\frac{x}{x+1}$	20	$\frac{1}{x^2 - 16}$	
	21	$x\sqrt{\left(x^2+4\right)^5}$	22	$\frac{x}{x^2 - 2x - 3}$	23	2^{4X+3}	24	$x LOG \sqrt{x^2 + 1}$	
	25	$SIN^{(n)}(x) COSx$	26	$\frac{3^{x+1}}{5^{1-4x}}$	27	$\frac{\mathrm{LN}x}{x}$	28	$x \operatorname{SIN}(\mathfrak{F}^2)$	
	29	$x \mid x \mid$	30	$\sqrt{6+x}$	31	$\frac{\sqrt{x+x}}{x\sqrt[3]{x}}$	32	$(1+2^{x})^{2}$	
	33	$\frac{2\sqrt{x}}{\sqrt{x}}$	34	$\frac{2x+1}{4^{x^2+x+1}}$	35	$2^x 2x\sqrt{1+2^x}$	36	$\frac{(E^{x+3})(3^{x+5})}{2^{3X-2}}$	
	37	$\frac{\text{COS}}{3+\text{SIN}x}$	38	$\frac{1}{x^2} \operatorname{CO}\left(\frac{1}{x}\right)$	39	$\frac{\text{SEC}\sqrt{x}}{\sqrt{x}}$	40	$\frac{\text{SIN}x}{\text{CO}\text{S}x}$	
	41	xe^{x^2}	42	$x^{-2}e^{\frac{1}{x}}$	43	$\frac{e^{\frac{1}{x}}}{x^2}$	44	$\frac{x+1}{x^2+2x+4}$	
	45	$\frac{4}{\left(x+3\right)^2}$	46	$\frac{x^2}{x+3}$	47	$(2x+1)(x^2+x + 3)^{10}$	48	$x\sqrt{9+x}^3$	
	49	$\cos e^{SINt} 5$	0 - \	$\frac{x}{\sqrt{x^2 + 5x}}$	51	$(1+2e^{x})^{2}$	52	$SIN(\frac{x}{3})$	
	53	$\frac{3x}{x^2-1}$	54 - ,	$\frac{3x^2}{x^2-9}$	55	$\frac{x}{(x-2)(x+1)^2}$	56	$\frac{3x+2}{\left(x+3\right)^2}$	
a	57	$\frac{4}{x^2(x+1)^2}$	58	$\frac{2x^2+1}{\left(x+1\right)^2\left(x+3\right)}$	59	$\frac{x^3+1}{x^2(x-4)}$	60	$\frac{x}{\left(x^2-1\right)\left(x+3\right)}$	
0	268	20	2						

IN <mark>EXERCISES 61 – 85</mark> EVALUATE THE DEFINITE INTEGRAL.							
61	$\int_{a}^{b} dx$	62	$\int_{e-1}^{e+1} 4dx$	63	$\int_{2}^{3} (x-5) dx$		
64	$\int_{1}^{2} 6x^{3} dx$	65	$\int_0^1 e^x dx$	66	$\int_{1}^{4} \sqrt{x} dx$	$\langle \rangle$	
67	$\int_{\sqrt{2}}^{3} 3^{x} dx$	68	$\int_1^8 x^{\frac{1}{3}} dx$	69	$\int_{1}^{3} \sqrt{x} \left(1 - \frac{1}{x} \right) dx$	0	
70	$\int_{-1}^{1} e^{x+3} dx$	71	$\int_0^1 3^{2x+5} dx$	72	$\int_{\frac{1}{2}}^{1} 2^{3x-2} dx$	Ŋ	
73	$\int_0^1 \frac{1}{x+1} dx$	74	$\int_{-2}^{2} \left(e^x + e^{-x} \right) dx$	75	$\int_{\frac{1}{n}}^{\frac{1}{n}}e^{nx}dx$		
76	$\int_{2}^{3} \frac{x}{x+5} dx$	77	$\int_0^3 x \sqrt{x^2 + 1} dx$	78	$\int_{1}^{9} \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$		
79	$\int_{\frac{1}{2}} \cos(5 dx)$	80	$\int_{\frac{2}{3}}^{\frac{2}{2}} \operatorname{SIN} x \operatorname{COS} dx$	81	$\int_0^1 \frac{t}{4^{t^2-1}} dt$		
82	$\int_0 \frac{\mathrm{SIN}x}{4 + \mathrm{COS}} dx$	83	$\int_{-2}^{1} (x+1)\sqrt{x+2} dx$	84	$\int_{1}^{0} x \left(8x^2 - 1\right)^6 dx$		
85	$\int_{1}^{2} \frac{2x-3}{\left(x^{2}-3x+1\right)} dx$						

IN EXERCISES 86 – 97FIND THE AREA OF THE REGION BOUNDED β , YITHEFACERS APH OF AND THE LINES AND = b.

86	f(x) = 4; a = -1, b = 2	87	f(x) = 3x; a = -3, b = -1
88	f(x) = 3x + 1; a = 0, b = 3	89	$f(x) = 2x^2 + 1; a = 0, b = 3$
90	$f(x) = 1 - 4x^2$; $a = -1, b = 1$	91	$f(x) = x^3$; $a = -\frac{1}{2}, b = 2$
92	$f(x) = e^x$; $a = -1, b = 4$	93	$f(x) = \frac{x}{x+1}; a = -\frac{1}{2}, b = 3$
94	$f(x) = \sqrt{x} + \frac{1}{\sqrt{x}}; a = \frac{1}{4}, b = 4$	95	$f(x) = LN_{t}; a = \frac{1}{e}, b = e$
96	$f(x) = x^3 - 2x^2 - 5x + 6; a = -2, b = 3$	97	$f(x) = x^2 - 1 $; $a = -3, b = 2$
9	AO.		269

